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Abstract—Generating both diverse and accurate descriptions
is an essential goal in the audio captioning task. Traditional
methods mainly focus on improving the accuracy of the gen-
erated captions but ignore their diversity. In contrast, recent
methods have considered generating diverse captions for a given
audio clip, but with the potential trade-off in caption accuracy.
In this work, we propose a new diverse audio captioning
method based on a variational autoencoder structure, dubbed
AC-VAE, aiming to achieve a better trade-off between the
diversity and accuracy of the generated captions. To improve
diversity, AC-VAE learns the latent word distribution at each
location based on contextual information. To uphold accuracy,
AC-VAE incorporates an autoregressive prior module and a
global constraint module, which enable precise modeling of word
distribution and encourage semantic consistency of captions at
the sentence level. We evaluate the proposed AC-VAE on the
Clotho dataset. Experimental results show that AC-VAE achieves
a better trade-off between diversity and accuracy compared to
the state-of-the-art methods. The code is publicly available at
https://github.com/XinMing0411/AC-VAE

Index Terms—Diverse audio captioning, variational autoen-
coder, diverse caption generation

I. INTRODUCTION

AUDIO captioning (AC) is a multimodal task aiming
at generating natural language descriptions for audio

clips [1]–[5].AC aims to obtain human-like descriptions by
summarizing the audio events and scenes within an audio clip,
and the semantic relationships between them [6], [7].

Thanks to the success of the DCASE Challenges [8], signifi-
cant progress on AC has been made recently. Most existing AC
methods [9]–[19] use maximum likelihood estimation (MLE)
or reinforcement learning (RL) to improve the accuracy of the
generated captions, by measuring the similarity between the
generated captions and human-annotated ground-truth (GT).
As an example, Table I shows the captions generated by
different methods that describe the same audio clip. While
the MLE and RL methods describe the audio clip accurately,
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TABLE I
CAPTIONS GENERATED BY HUMAN AND TRADITIONAL METHODS.

Model Generated Text
MLE it is raining and the rain is hitting the ground.

it is raining and the rain is hitting the pavement.
it is raining and the rain is pouring down.

RL a fire is crackling and a in a.
a fire is crackling and a in the.
a fire is crackling on a roof and a.

GT a fire lowly crackles and pops on occasion.
the fire snaps and crackles as the log begins to burn down.
the raindrop hitting the ground is crackling.

the generated captions are general and lack diversity. In
contrast, due to the ambiguity of audio and the complexity
of linguistic representations, people describe the content of
audio in greater diversity, e.g., with richer vocabulary, more
flexible grammatical structures.

To address the above issues and to generate captions that
are more naturally aligned with human perception, Mei et al.
[20], [21] and Xu et al. [22] proposed diverse audio captioning
methods based on generative models. They utilized conditional
generative adversarial networks (cGANs) with a combination
of multiple discriminators, operating at the coarse-grained
sentence level to ensure the quality of generated captions.
This leads to captions of good diversity, but at certain cost
of captioning accuracy.

In this work, we leverage the capability of the variational
autoencoder (VAE) [23] architecture and propose AC-VAE
to achieve accurate and diverse audio captioning. Compared
to GAN-based methods, which can only implicitly model at
the coarse-grained sentence level, AC-VAE explicitly models
the semantic distribution of each word. During generation, it
randomly samples from the distribution to ensure the diversity
of the generated captions in a more fine-grained way. Also, to
ensure accuracy, we propose the autoregressive prior module
and the global constraint module to maintain semantic coher-
ence between the generated sentences and the ground-truth
captions. In addition, the previous metrics fail to measure the
trade-off between accuracy and diversity, and only evaluate
them individually. To address these issues, we propose the
diversity-accuracy equilibrium score (DAES) to evaluate the
overall accuracy-diversity performance.

Our contributions are threefold:
1) We present a novel VAE-based diverse audio captioning

method, dubbed AC-VAE, to generate accurate and di-
verse audio captions.

2) We introduce a new metric, dubbed DAES, designed to
assess the accuracy-diversity trade-off of AC models.

3) Comparative experiments were conducted on the Clotho

https://github.com/XinMing0411/AC-VAE
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Fig. 1. The architecture of our proposed AC-VAE. The posterior module models the word latent distribution at each position with contextual information of
Ground-Truth caption, the autoregressive prior module models the present word distribution based on the generated words, and the global constraint is utilized
to ensure the semantic consistency of the generated captions.

dataset [2], revealing that the AC-VAE method outper-
forms SoTA methods [20], [21] in 6 out of 8 metrics.

II. PROPOSED METHOD

A. Overview of the Proposed Method

We formulate the AC task as the problem of estimating the
posterior probability of the caption X = (x1, . . . , xT ) for a
given acoustic feature A, denoted as p(X|A), and T is the
number of words. Instead of directly modeling p(X|A), we
introduce a latent variable Z = (z1, . . . , zT ), which captures
the distribution of words at each position t. Therefore, p(X|A)
can be modelled as variational structure:

p(X|Z,A) =

T∏
t=1

p(xt|x≤t−1, z≤t,A). (1)

During Training: As shown in Fig. 1, at each position t, the
ground-truth caption XGT is fed into the posterior module to
obtain the posterior latent zpostt :

zpostt ∼ q(zpostt |XGT ), (2)

where q(zpostt |XGT ) represents the posterior module for mod-
eling the posterior distribution.

The prior latent zprit is modeled based on the acoustic
feature A, the prior latent of the previous position zpri≤t−1, and
the generated text x≤t−1 as

zprit ∼ p(zprit |zpri≤t−1, x≤t−1,A), (3)

where p(zprit |zpri≤t−1, x≤t−1,A) is modeled by the prior mod-
ule.

Then the language decoder utilizes zpost≤t and A to predict
the current word xt as

xt ∼ p(xt|zpost≤t , x≤t−1,A). (4)

According to [23], [24], the variational structure is opti-
mized by maximizing the evidence lower bound (ELBO), and
thus the loss function LELBO

t for each position t is:

LELBO
t =KL[q(zpostt |XGT )||p(zprit |zpri≤t−1, x≤t−1,A)]

−E
q(z

post
t |XGT )

[log p(xt|zpost≤t , x≤t−1,A)],
(5)

where the first term is the KL divergence constraint and the
second is the cross-entropy reconstruction term.

In addition, we use the global embedding of the target
caption egt to constrain the global embedding of the predicted
sentence epre, thus encouraging them to be semantically

consistent at the sentence level. The global constraint loss
Lglobal is ∥epre − egt∥2.

Therefore, the total loss function L is

L =
1

T

T∑
t=1

LELBO
t + α · Lglobal, (6)

where the hyperparameter α is set to 0.03 in our experiments.
During Inference: Since target captions are not available
during inference, the posterior module is excluded. The prior
latent zprit replaces the posterior latent zpostt to generate the
current word. Therefore, Equation (4) is reformulated as

xt ∼ p(xt|zpri≤t , x≤t−1,A), (7)

B. The Caption Posterior Module

We empirically use a bi-directional GRU network and the
linear layers to model the posterior distribution of the latent
variable Zpost = (zpost1 , . . . , zpostT ).

Specifically, XGT is fed into the posterior module to get
the hidden states Hpost = (hpost

1 , . . . , hpost
T ), and the hidden

state hpost
t is the t-th element of Hpost. Then, hpost

t is fed
into the linear layers (Linearµ and Linearσ), respectively, to
obtain the mean µpost

t and standard deviation σpost
t at position

t as
µpost
t = Linearµ(h

post
t ), (8)

σpost
t = exp(0.5 ∗ Linearσ(hpost

t )), (9)

where exp is an exponential function and the output of
Linearσ is the logarithmic variance for optimization purposes.
Finally, we sample from the posterior distribution to generate
zpostt :

zpostt = µpost
t + ϵ ∗ σpost

t , (10)

where ϵ ∼ N (0, I) is a random variable.

C. The Autoregressive Prior Module

Unlike other VAE-based methods [25], [26], we empirically
design an autoregressive prior module to model the prior
variables Zpri = (zpri1 , . . . , zpriT ), as shown in Fig. 1.

The prior module includes the LSTM network and the linear
layers. Given the prior latent zprit−1, the generated word xt−1,
and A, the prior network generates the hidden state at the
current position hpri

t :

apri
t = Softmax

(
V pri · tanh(W pri · [A;xt−1])

)
·A, (11)

hpri
t = LSTM

([
xt−1; z

pri
t−1; a

pri
t

]
, hpri

t−1

)
, (12)
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where aprit is the context audio embedding, which aggregates
A using the attention mechanism, V pri and W pri are learn-
able weights, [·; ·] is the concatenation operation, and Softmax
and tanh are the activation functions.Similar to the posterior
module, the hidden state hpri

t is then used to generate the prior
latent zprit .

D. Audio Encoder and Language Decoder

In this work, we use the pre-trained 10-layer convolutional
neural network (CNN10) [27] as the audio encoder to extract
the audio feature A. For the language decoder, a single-
layer GRU [28] is used to estimate the word probabilities
p(xt|zt, xt−1,A) at the current position t as

adec
t = Softmax

(
V dec · tanh(W dec · [A;xt−1])

)
·A, (13)

hdec
t = GRU

([
xt−1; zt; a

dec
t

]
, hdec

t−1

)
, (14)

where adect is the context audio embedding of the decoder,
V dec and W dec are learnable weights, zt represents zpostt

during training and zprit during inference, and hdec
t is the

hidden state of the decoder at the current position t. Following
a linear layer and the Softmax function, the output word
probabilities are obtained.

E. The Global Constraint

As shown in Equation (5), the loss function LELBO
t is

used for optimizing the model with constraints only on local
information captured at the word level. To improve the quality
of the generated text of the model, sentence-level semantic
constraints are applied.

We preserve the decoder hidden state hdec
t at each position

and obtain all the decoder hidden states Hdec. Then, the global
mean pooling is applied on Hpost and Hdec to generate global
embeddings egt and epre, respectively,

egt = Mean(Hpost), epre = Mean(Hdec), (15)

where Mean(·) represents the global mean pooling, and then
egt and epre are used in Equation (6) for training the model.

III. EXPERIMENT SETUP

A. Dataset

We conduct the experiments on the Clotho dataset [2] which
is the official benchmark in the DCASE Challenge for the AC
task. Each audio clip has five captions. The annotator only uses
the audio signals for annotation without additional signal.

B. Implementation Details

We extract a 64-dimensional log-Mel spectrogram from
each audio clip as the input to the audio encoder, where the
window shift and size are 1024 and 2048 sampling points.
The model is trained by Adam optimizer [29] with an initial
learning rate of 5 × 10−4. The warm-up strategy is used to
increase the learning rate linearly in the first five epochs. The
model is trained for 15 epochs. During inference, we generate
five captions using a beam search with a beam size 5.

C. Evaluation Metrics

Similar to [20], [21], we employ accuracy metrics (BLEU4,
CIDEr, and SPIDEr) and diversity metrics (Vocab, mBLEU4,
Div-1, and Div-2) to quantify model performance. Inspired
by the F-Score, we devise the DAES to measure the overall
accuracy-diversity performance by combining accuracy and
diversity metrics sets, normalized relative to human perfor-
mance:

DAES =
2

3/
∑

a∈Acc Norm(a) + 4/
∑

d∈Div Norm(d)
. (16)

Here, Acc and Div represent the accuracy and diversity
metrics sets, respectively. Norm(·) represents the normaliza-
tion of model performance relative to human performance,
typically falling within the range of 0 to 1. It is important
to note that for mBLEU4, smaller values indicate better
performance, so the normalization involves dividing the human
reference score by the model’s score.

Hence the higher DAES, the higher the overall performance.

IV. RESULTS AND ANALYSIS

A. Comparison with Baseline Models

The baseline MLE method is a traditional method, which
is trained by the cross-entropy loss and shares a similar
architecture of encoder and decoder with AC-VAE.

As shown in Table II, the last row represents the human
performance, which is calculated by treating one of the five
human-annotated captions as the predicted caption, with the
remaining four captions serving as references. Subsequently,
scores for all five captions are computed in parallel and av-
eraged. The baseline MLE achieves better results in accuracy
metrics but performs worse in diversity and DAES metrics.
This result is expected, since as previously discussed, MLE
encourages the appearance of commonly used n-grams in the
target caption, and these accuracy metrics primarily measure
the degree of n-grams matching. Compared to the baseline,
our proposed method shows a decrease of 0.037 in accuracy
metrics (e.g., CIDEr). However, there is a substantial increase
in the diversity metric (e.g., Div-2), rising from 0.233 to 0.574,
indicating enhanced diversity in the generated captions.

B. Comparison to State-of-the-Art

We compare our proposed AC-VAE with other methods that
have achieved state-of-the-art performance in diverse audio
captioning tasks using the cGAN framework [20], [21]. These
methods generate different captions for the same audio clip
by utilizing different noises. As compared to the aforemen-
tioned cGAN methods, our proposed AC-VAE achieves better
performance in six out of all eight metrics, and especially in
the accuracy metrics, our method is significantly superior. The
experimental results demonstrate that our method can gener-
ate more accurate caption descriptions of the audio content
while maintaining diversity. This is crucial for ensuring the
faithfulness of the captions generated about the audio clip.
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TABLE II
EXPERIMENTAL RESULTS OF THE PROPOSED METHOD COMPARED WITH BASELINE MODEL AND OTHERS’ METHODS

Model BLEU4↑ CIDEr↑ SPIDEr↑ Vocab↑ mBLEU4↓ Div-1↑ Div-2↑ DAES↑

Baseline MLE 0.153 0.382 0.254 613 0.951 0.212 0.233 0.360

Other works cGAN [21] 0.119 0.291 0.198 897 0.432 0.423 0.559 0.448
cGAN [20] 0.122 0.295 0.199 818 0.615 0.335 0.442 0.411

AC-VAE 0.130 0.345 0.230 899 0.442 0.417 0.574 0.488
Human 0.321 0.901 0.566 3516 0.321 0.561 0.724 1.000

TABLE III
ABLATION STUDIES OF DIFFERENT MODULES

WD LA GC CIDEr↑ Div-2↑ DAES↑

a. 0.314 0.359 0.382
b. ✓ 0.304 0.561 0.445
c. ✓ - - -
d. ✓ ✓ 0.327 0.579 0.476
e. ✓ ✓ 0.335 0.564 0.478
f. ✓ ✓ ✓ 0.345 0.574 0.488

C. Ablation Studies

In this section, we conduct an ablation study to investigate
the contribution of the mechanisms in our proposed method.
The results are summarized in Table III. “WD” is the word-
level distributional constraint mechanism, “LA” is the learn-
able autoregressive prior module, and the “GC” represents the
global constraint module.

Row a in Table III represents the vanilla conditional VAE-
based AC method, which models the distribution at the sen-
tence level, like the GAN-based methods [20], [21]. Row b
means that the word distribution at each position follows a
standard normal distribution. From the experimental results,
we can find that Row b achieves significant improvement
in diversity and DAES metrics compared to Row a. This is
because the captions generated by sampling on fine-grained
word distributions can be more diverse compared to the vanilla
cVAE modeling distributions at the coarse-grained sentence
level. Row c shows that the model fails to converge when
only the global constraint module is used.

Comparing Row b with Rows d and e, respectively, we
find that the autoregressive prior module can improve the
model performance on almost all metrics because it accurately
models word distributions with additional audio information
and semantic information of the generated words. The global
constraint module provides additional sentence-level informa-
tion from the ground-truth captions as an extra constraint
target. Using the above modules, AC-VAE (in Row f ) achieves
the best overall performance.

D. How Diversity Is Derived?

To examine the influence of latent variables on caption gen-
eration and understand the factors contributing to the achieved
diversity, we conduct an analysis for the latent variables. As
shown in Fig. 2, the [µ − 2σ, µ + 2σ] interval of the latent
variable distributions at different locations (t = 2, 4, 6) are
sampled uniformly. It can be found that the latent variable
distributions at each location can facilitate the generation of
multiple words, and each word corresponds to a different

metal object being moved back and forth

person is using a knife and then the knife is being sharpened

knife being sharpened on a hard surface
a

𝜇 − 2𝛿

𝜇 + 2𝛿

𝜇 + 	𝛿

𝜇

𝜇 − 𝛿

heavilywith thunder in the backgroundheavy rain falls
on a roof at a steady pace
down heavily as the wind blows

in a creek

𝜇 − 2𝛿

𝜇 + 2𝛿

𝜇 + 	𝛿

𝜇

𝜇 − 𝛿

a group of people are
a child is and talking

talking and a child laughs loudly
making a sounds and a child is speaking

𝜇 − 2𝛿
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𝜇
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Fig. 2. The corresponding words of the latent space for three different
examples of AC-VAE. Different colors represent different words.
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Fig. 3. The effect of hyperparameter α on performance metrics. The left figure
shows the experimental results of CIDEr and Div-2, and the right figure shows
the experimental results of DAES.

distribution interval. In the inference stage, the latent variables
generated by random sampling cause the model to generate
different words at the same word location and affect the
distribution of latent variables at subsequent word locations.

E. The Effect of Different Hyperparameter α

Fig. 3 shows the results of varying the hyperparameter α.
We can find that when α increases, the accuracy (CIDEr) is
further improved, but the impact on the diversity (Div-2) is
little, meaning that with the introduction of global information,
the generated captions can describe the audio contents more
accurately. When α continues to increase, the performance of
the model decreases significantly, and the overall performance
of the model, DAES, is highest when α is 0.03.

V. CONCLUSION

We have presented a new variational framework-based audio
captioning method called AC-VAE. To improve diversity, we
model the semantic distribution at the word position level in
a more fine-grained way than at the sentence level. To ensure
accuracy, we introduce the autoregressive prior module and
the global constraint module to maintain semantic coherence
between the generated sentences and the ground-truth captions.
Experimental results show that our proposed model can gener-
ate captions with better semantic consistency and comparable
diversity as compared with SOTA methods.
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[28] K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio, “On the
properties of neural machine translation: Encoder-decoder approaches,”
arXiv preprint arXiv:1409.1259, 2014.

[29] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.


	Introduction
	Proposed Method
	Overview of the Proposed Method
	The Caption Posterior Module
	The Autoregressive Prior Module
	Audio Encoder and Language Decoder
	The Global Constraint

	Experiment Setup
	Dataset
	Implementation Details
	Evaluation Metrics

	Results and Analysis
	Comparison with Baseline Models
	Comparison to State-of-the-Art
	Ablation Studies
	How Diversity Is Derived?
	The Effect of Different Hyperparameter 

	Conclusion
	References

